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Abstract

Various implementations of the exponential wide band model (EWBM) are used to model radiative heat transfer in

one- and two-dimensional enclosures containing CO2 and H2O. These are, first, the original banded approach using the

four-region approximation for the total band absorption, second, a numerical integration of the spectral transmittance,

and third, the wide band correlated k-distribution method (CKM). A correlated and a non-correlated formulation are

used to solve the radiative transfer equation. In two-dimensional enclosures, these formulations are implemented using

a ray tracing method (RTM) and the discrete ordinates method (DOM), respectively. The wide band CKM is found to

be the best choice concerning accuracy and computational effort. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The numerical simulation of radiative heat transfer in

combustion systems is very complex since the radiative

properties of the combustion gases are strongly corre-

lated with the wave number of the radiative intensity.

Several models exist to account for the dependency of

the absorptance of combustion gases on the wave

number spectrum. Line-by-line (LBL) models [1] calcu-

late the radiative properties for each individual line.

They yield very accurate results, but are computation-

ally far too expensive for engineering applications, since

the whole spectrum consists of millions of single lines.

Narrow band models [2] divide the spectrum in a spec-

ified number of narrow bands within which the prop-

erties are calculated. But due to the large number of

bands, these models are still not efficient for multi-di-

mensional computations.

In order to further simplify the calculations, wide

band models treat each rotational–vibrational band as a

whole. Edwards and Balakrishnan [3] developed the

exponential wide band model (EWBM) assuming an

exponential function of the line intensity around a band

centre. The total band absorption is approximated by a

four-region expression and the band transmittance is

calculated using a grey band assumption. Several re-

searchers have worked on this model. Modak [4] found

improved parameters for the pure rotational band of

water vapour. Docherty and Fairweather [5] successfully

applied the EWBM to flame calculations using the dis-

crete transfer method. Since the grey band assumption

leads to large errors for small path lengths, Komornicki

and Tomeczek [6] modified the EWBM by tabulating the

absorptance of the main bands in terms of temperature

and optical depth. Cumber et al. [7] reached improved

results by dividing the entire wave number spectrum into

a fixed number of intervals and calculating the trans-

mittance of each interval directly from the spectral

transmittance.

One of the major problems of the EWBM is that it

computes transmittances dependent on path length in-

stead of absorption coefficients, which are required for

the solution of the radiative transfer equation (RTE).
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This greatly complicates the coupling between the

EWBM and the RTE. Recently, the k-distribution

method, formerly developed for atmospheric radiation

[8,9], has received increased attention in the heat transfer

community [10]. In this method, the wave number

spectrum is reordered to yield a smooth function of the

absorption coefficient, so that a set of mean values of the

absorption coefficient can be introduced for a certain

wave number interval. If narrow band intervals are

considered, the method becomes computational too ex-

pensive for most engineering applications. However,

wide band intervals may also be used yielding the wide

band correlated k-distribution method (CKM). Lee et al.

[11] and Parthasarathy et al. [12] developed reordered

wave number distribution functions of the absorption

coefficient based on continuous correlations for the wide

band absorption. Marin and Buckius [13,14] found

simple correlations to calculate the absorption coeffi-

cient directly from the cumulative distribution function.

Denison and Fiveland [15] presented a correlation in

closed form for the reordered wave number that closely

approximates the four-region expression for the wide

band absorption.

The discrete ordinates method (DOM) [16,17] is one

of the most popular radiation models presently available

because it combines accuracy, flexibility and computa-

tional economy. However, like other differential radia-

tion solvers, the DOM is difficult to couple with the

EWBM. The exact implementation has been presented

in [18] for black walls, and later extended to diffusely

reflecting walls for the case of one-dimensional problems

[19]. This rigorous treatment is generally referred to as

the correlated formulation. The extension of this for-

mulation to multi-dimensional problems is not feasible.

Therefore, the correlated formulation has to be used

along with a ray tracing method (RTM) rather than the

DOM. The non-correlated formulation allows a

straightforward application of the EWBM to the solu-

tion of the RTE using the DOM for both one- and

multi-dimensional problems, but it is often unsatisfac-

tory [20]. The wide band CKM is also easily coupled

with the DOM.

The aim of this study is to compare the different

approaches of the EWBM and to find an optimal solu-

tion for engineering calculations for multi-dimensional

cases considering both numerical accuracy and effi-

ciency. Five different approaches are considered, namely

the four-region expression of the EWBM applied to the

correlated and non-correlated formulations, the inte-

gration of the spectral transmittance given by the

EWBM also applied to the correlated and non-corre-

lated formulations, and the wide band CKM applied to

the DOM.

The implementation of three of these five approaches

present some original features. Hence, the four-region

expression of the EWBM is applied to the non-corre-

lated formulation using fixed band limits. It has been

shown [21] that this strategy yields more accurate results

than the original approach. Cumber et al. [7] have only

used the non-correlated formulation for their integration

Nomenclature

A band absorption (cm�1)

aj weight of grey gas

Ci;j coefficient in Eq. (15)

En exponential integral function

F blackbody fractional function

I radiative intensity (W m�2 sr�1)

~nn normal vector

pi pole

q heat flux density (W m�2)

S/d line intensity to line spacing ratio (m2g�1)

s path along a ray (m)

T temperature (K)

w quadrature weight

X absorber density-path length product (g m�2)

Greek symbols

a integrated band intensity (cm�1 ðg�1 m2Þ)
b line width-to-spacing parameter

Dm band width (cm�1)

e emissivity

g x-direction cosine

j absorption coefficient (m�1)

v wave number (cm�1)

n reordered wave number (cm�1)

q gas density (g m�3)

s transmittance

sH optical depth at band head

X solid angle (sr)

x band width parameter (cm�1)

Subscripts

b blackbody

c centre limit

j grey gas

k band

l lower limit

n computational cell face

u upper limit

w wall

v spectral

Superscript

m direction

� dimensionless variables
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method, whereas both the correlated and non-correlated

formulations are applied to this method in the present

study. Finally, the correlations of Denison and Fiveland

[15] used in the wide band CKM, that had previously

only been used to solve one-dimensional homogeneous

radiative transfer problems, are applied here to multi-

dimensional non-homogeneous media.

The correlated and non-correlated formulations are

briefly described in the next section. Then, the different

implementations of the EWBM are outlined. A com-

parison between predicted and measured emissivity

spectra is given in Section 4. The radiative transfer in

one- and two-dimensional enclosures is presented and

discussed in Section 5, and the paper ends with a sum-

mary of the main conclusions.

2. Radiative transfer equation

The change of spectral intensity Im along a path s is

described by the RTE. Using a band model, the intensity

is averaged over the width of the band, indicated by

overbar symbols. The wave number averaged form of

the RTE in an absorbing and emitting, non-scattering

medium can be written as

d

ds
�IIm ¼ �jjm

�IIb;m � jmIm: ð1Þ

Scattering can be neglected in gaseous media without

large particles, as that appearing in natural gas flames.

While the Planck function Ib;m is smooth over the wave

number spectrum, the intensity Im is strongly correlated

with the absorption coefficient j. Using an exact for-

mulation (see [18]), the correlated intensity along a path

s is expressed in terms of transmittance as needed for the

EWBM

�IIm ¼ �IIm;w�ssm swð ! sÞ þ
Z s

sw

o

os0
�ssmðs0 ! sÞ�IIb;m ds0: ð2Þ

The intensity Im;w originating from the point sw on a wall

is the blackbody intensity of the wall Ib;m;w in the case of a

black wall. For grey, diffusely reflecting walls, an ana-

lytical formulation of the spectral averaged intensity is

not possible (see [19]). Thus, a zeroth-degree closure is

introduced assuming the intensity onto the wall to be

independent of wave number within a band

�IIm;0 ¼ ew�IIb;m;w þ 1� ew
p

Z
~ss	~nnw<0

�IIm ~ss 	~nnw
��� ���dX: ð3Þ

In this equation, ew is the wall emissivity, ~ss is the di-

rection of propagation of the radiative intensity, ~nnw is

the unit normal vector at the wall and X is the solid

angle. The zeroth-degree closure is exact for non-re-

flecting (i.e., black) walls. The accuracy of this closure

assumption is expected to decrease as the reflectivity of

the walls increases. However, even in the case of highly

reflecting walls, the zeroth-degree closure may be a good

approximation provided that the medium is optically

thick, because in this case radiation leaving the walls will

be rapidly absorbed by the medium.

When the intensity along a line of sight is discretized

into homogeneous cells, the intensity at point n depends

on all upstream blackbody intensities and on all trans-

mittances si!n from each upstream cell i to n. Following

the notation in Fig. 1, the spatial discretized form of Eq.

(2) is

�IIm;n ¼ �IIm;0�ssm;0!n þ
Xn�1

i¼0

�ssm;iþ1!n

�
� �ssm;i!n

�
�IIb;m;iþ1=2: ð4Þ

The Curtis–Godson approximation [22] is applied to

calculate transmittances for a non-isothermal or non-

homogeneous medium. The calculation of the difference

of transmittance in Eq. (4) is not straightforward when

the band limits are not constant, i.e. when the four-re-

gion expression is used. In this study, the band limits are

pre-defined using the limits for the calculation of �ssm;0!n.

A pre-defined band with the lower limit mfix;l, and upper

limit mfix;u, is split into sub-bands using the lower limits

m1;l, m2;l and upper limits m1;u, m2;u for two consecutive

transmittances s1 ¼ �ssm;i!n and s2 ¼ �ssm;iþ1!n, as illustrated

in Fig. 2. In each sub-band, the transmittance difference

Fig. 1. Spatial discretization along a line of sight.

Fig. 2. Calculation of transmittance difference.
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is computed individually, and the transmitted blackbody

intensities are summed afterwards.

The correlated formulation described above may lead

to excessive computer times. Therefore, several authors

[5,7,18] have used an alternative formulation that ne-

glects the correlation between the radiation intensity and

the absorption coefficient, and leads to the far simpler

recurrence relation

�IIm;n ¼ �IIm;n�1�ssm;n�1!n þ �IIb;m;n�1=2 1
�

� �ssm;n�1!n

�
: ð5Þ

Although physically unrealistic, this formulation has

often been used, and may lead to acceptable results [5,7],

but general conditions required to obtain accurate re-

sults have not been established.

The intensity distribution in a one-dimensional en-

closure is calculated from Eqs. (4) or (5) using a discrete

ordinates quadrature for angular discretization. The

transmittance of a gas layer with thickness Dx is com-

puted based on the path length L ¼ Dx=gm where gm is

the x direction cosine of direction m. The wall heat flux

density qw is derived from the sum of all incoming in-

tensities of all bands k and directions m with their

quadrature weights wm

qw ¼
X
k

X
m

~ssm 	~nnw<0

Imk w
m gmj j: ð6Þ

Application of Eq. (4) to multi-dimensional enclosures is

very time consuming since an RTM has to be applied.

The intensity is traced from each cell face to the wall for

all directions. If a differential solver of the RTE is em-

ployed, such as the DOM, the absorption coefficient of

the medium must be known. This is accomplished by

assuming that the medium is grey within a wide band,

and using Beer’s law to calculate the absorption coeffi-

cient from the mean transmissivity within a band.

However, the absorption coefficient is a local property,

independent of any path length, while the mean trans-

missivity requires the specification of the path length.

There are two possible choices for the mean transmis-

sivity used to compute the local absorption coefficient at

a given point within the medium and for a given wide

band: the mean beam length of the local cell, or the

mean beam length of the whole domain. One reason to

select the second approach is that in the case of a ho-

mogeneous and isothermal medium, the radiation in-

tensity at the end of a line of sight is independent of the

grid size if the mean beam length of the whole domain is

used. In the present work, both methods have been tried,

but only the second one, which has given better results is

selected.

When the wide band CKM is used, the reordered

wave number spectrum is discretized into a set of grey

gases with absorption coefficients jj. The RTE is solved

for all grey gases

d

ds
Ij ¼ jjðajIb � IjÞ: ð7Þ

where aj are the weights to be defined in the following

section. The DOM may be used to solve this equation

for all grey gases.

3. Exponential wide band model

Only a short overview of the EWBM is given here

since a detailed description may be found in [22]. The

model is based on the fact that absorption and emission

of infra-red radiation from gases is generally concen-

trated within several bands resulting from changes of

energy storage of the molecules between vibrational

modes. Energy changes between rotational modes lead

to a large number of spectral lines within each band. A

detailed knowledge of the position, shape and intensity

of theses lines is considered to be unimportant in the

EWBM, instead the line intensity is approximated by an

exponentially decreasing function. The radiative prop-

erties are obtained by specifying three model parameters

that characterize a given absorption band, which are an

integrated band intensity a, a mean line width-to-spac-

ing parameter b, and a band width parameter x. These

parameters are in general a function of temperature

evaluated by Edwards and Balakrishnan [3]. The mean

line intensity to spectral line spacing ratio S/d is given by

one of three simple exponential functions depending on

whether a lower limit ml, upper limit mu or band centre

wave number mc is used to prescribe the position of the

band head

S=d ¼ ða=xÞe�ðmu�mÞ=x ðupper limitÞ; ð8aÞ

S=d ¼ ða=xÞe�ðm�mlÞ=x ðlower limitÞ; ð8bÞ

S=d ¼ ða=xÞe�2 mc�mj j=x ðband centreÞ: ð8cÞ

The spectral transmittance of the band at wave number m
is derived from

sm ¼ exp
�ðS=dÞX

1þ ðS=dÞX=bð Þ1=2

" #
: ð9Þ

3.1. Four-region method

Various methods are possible to calculate the trans-

mittance of an entire band. The original method of

Edwards [22] approximates the band absorption A using

the so-called four-region expression

A� ¼ sH for sH 6 1; sH 6 b; ð10aÞ

A� ¼ ð4bsHÞ1=2 � b for b6 sH 6 1=b; b6 1; ð10bÞ

A� ¼ lnðsHbÞ þ 2� b for 1=b6 sH 61; b6 1; ð10cÞ
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A� ¼ ln sH þ 1 for sH P 1; bP 1; ð10dÞ

where A� ¼ A=x is the dimensionless band absorption

and sH the optical depth at the band head. The trans-

mittance of the band k is calculated from

sk ¼ sH=Að Þ dA=dsHð Þ: ð11Þ

The width of the band is found by

Dm ¼ A=ð1� skÞ: ð12Þ

The transmittance is assumed to be constant within the

band limits, which implies a grey band approximation

that breaks down at small optical depths. Therefore,

Edwards [22] suggested an upper limit of 0.9 on band

transmittance. This assumption can cause serious errors

if the recurrence relation is employed leading to a strong

dependence on the grid resolution (see [21]). Thus, the

band limits are defined from the average properties of

the whole domain in a preprocessing step. However, the

band absorption is still computed from Eq. (10a)–(10d).

Therefore, variations in the temperature and composi-

tion of the medium are accounted for. The only differ-

ence is that instead of calculating first the mean

transmissivity from Eq. (11), the bandwidth is pre-

scribed first. The transmittance of the band for a control

volume is calculated from

sk ¼ 1� A=Dmfix ð13Þ

where A is the band absorption for that control volume,

and Dmfix is the fixed band width calculated in the pre-

processing step. It was found that this procedure yields

better results than those obtained from Eq. (12) together

with the arbitrary upper limit of 0.9 for sk . Moreover,

the results become less sensitive to the grid resolution.

When two or more bands overlap, a new band is created

and the transmittance of the overlapping region is equal

to the product of the transmittances of the individual

bands.

3.2. Integration method

Another method proposed by Cumber et al. [7] is to

divide the whole spectrum into several wave number

intervals and to calculate the transmittance directly from

Eq. (9). The intensity is computed for each interval using

a recurrence relation and integrated over the entire

spectrum. In this study, either the correlated or the non-

correlated formulation is applied, and a mean trans-

mittance of each interval is computed by numerical

integration

sk ¼
1

Dm

Z
Dm

sm;b dm: ð14Þ

Since the model parameters were optimized for the four-

region expression, x was increased by 20% following the

recommendations of Edwards [22]. The selection of the

band limits does not strongly influence the results [21].

When two or more bands overlap, the total transmit-

tance of the overlapping region is equal to the product of

the individual band transmittances.

3.3. Wide band CKM

The EWBM described above yields transmittances

whereas for Eq. (1) the absorption coefficient is needed.

In the wide band CKM, the wave number spectrum is

reordered to yield monotonic decreasing functions of the

absorption coefficient around the band centres. The

absorption coefficient varies smoothly within each re-

ordered wave number interval so that a discretized set of

absorption coefficients is introduced that can easily be

applied to Eq. (7). Denison and Fiveland [15] found a

simple correlation for the dimensionless reordered wave

number n� by a fit to the four-region expression (Eqs.

(10a)–(10d))

n�ðj�Þ ¼
X
i

Ci;1E1ðpij�Þ þ C1;2

e�p1j�

p1
; ð15Þ

where E1 is the first-order exponential integral function

and j� is the dimensionless absorption coefficient. The

poles pi and coefficients Ci;k are listed in [15]. The reor-

dered wave numbers for band k are given by

nkðjjÞ ¼ xkn
�ðj�Þ ¼ xkn

� jj

qak=xk

� 	
: ð16Þ

The weights aj in Eq. (7) are calculated as blackbody

fractions DF that correspond to the reordered wave

number intervals where the absorption coefficient lies

between jj�1=2 and jjþ1=2

aj ¼
X
k

F ½g0;k



� nkðjjþ1=2Þ=2;T 

� F ½g0;k � nkðjj�1=2Þ=2;T  þ F ½g0;k þ nkðjj�1=2Þ=2;T 
� F ½g0;k þ nkðjjþ1=2Þ=2;T 

�
: ð17Þ

This equation is valid for a symmetric band centred at

wave number g0;k . Similar expressions may be written for

bands with upper or lower limit heads. In this study, 20

grey gases with logarithmically spaced absorption coef-

ficients are used. In the case of non-homogeneous media,

the reordered wave numbers are derived from mean

temperature and concentrations over the whole domain,

whereas the blackbody fractions are computed from the

local temperature. The local absorption coefficient is

multiplied by the ratio of the local partial pressure of the

absorbing gases to the partial pressure averaged over

the whole domain. When two or more bands overlap,

the individual absorption coefficients are added, and the

corresponding blackbody fraction of the overlapping

region is contributed to the grey gas j where the sum of

absorption coefficients lies between jj�1=2 and jjþ1=2.
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This procedure is also applicable to mixtures of gases

under the restriction of a spatially constant ratio of

partial pressures of any absorbing gases.

4. Spectral emissivity

In order to investigate the behaviour of the described

methods, spectral emissivities computed both from the

four-region expression using Eq. (11) and from the

spectral transmittance (integration method) using Eq.

(9) are compared to experimental and narrow band

(NBM) data of Ludwig et al. [2]. Two spectra of water

vapour at atmospheric pressure for a path length of 20 ft

(6.096 m) at 1500 and 2500 K are shown in Fig. 3. The

total emissivities computed from the two different im-

plementations of the EWBM are very close to each

other. At 1500 K the EWBM agrees quite well with the

experimental data apart from a faulty shape and small

shift of the bands to higher wave numbers. This is ex-

pected because of the different level of resolution of

narrow and wide band models. In fact, both wide and

narrow band models use smooth exponential functions

to approximate the band shape. However, the width of

the bands is greater in wide band models, and therefore

it is more difficult for these models to approximate the

spectral transmissivity by smooth exponential functions,

particularly in the case of band overlapping. Higher

differences are observed at 2500 K where the EWBM

generally underpredicts the emissivity for all bands. This

may be due to the very high temperature and the

inherent uncertainty in the spectroscopic data from

which the parameters of the wide band model have been

obtained. In fact, many spectral lines that are week at

low temperatures become important at high tempera-

tures, requiring an extrapolation of experimental data to

high temperatures. This means that the data may be

quite accurate at low temperatures, but much less ac-

curate at high temperatures.

Two spectra of the 1:87 lm (5350 cm�1) H2O band at

atmospheric pressure for small optical depths are shown

in Fig. 4. The partial pressure-path length products are

2.35 and 12:7 cm atm (related to standard density), and

the temperatures are 900 and 823 K, respectively. Here

Fig. 3. Experimental (solid line) and computed H2O spectra with NBM (symbols, taken from [2]), banded method (dashed line) and

integration method (dash–dotted lines) at 1500 K (a) and 2500 K (b) with 20 ft path length.

Fig. 4. Experimental (solid line) and computed H2O spectra at

1:87l with NBM (symbols, taken from [2]), banded method

(dashed line) and integration method (dash–dotted lines) at 900

K with 2.35 cm atm (a) and 832 K with 12.7 cm atm (b).
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the EWBM is in fair agreement with the experiments.

The integration method can approximately reproduce

the shape of the band but slightly underpredicts the total

band absorption, which is the area below the curves.

These deviations might be due to the fact that the

EWBM parameters are optimized for the four-region

expression and not for Eq. (9).

5. Radiative transfer in enclosures

Five different approaches of the EWBM described in

the previous sections are applied to several test cases.

These are the original method using the four-region

expression with the correlated (4RM-c) and the non-

correlated formulation (4RM-n), the integration method

with the correlated (INT-c) and the non-correlated for-

mulation (INT-n), and the wide band CKM that can be

solved by the non-correlated formulation. Fixed band

limits based on the average properties of the whole do-

main are used in the 4RM-n.

5.1. One-dimensional enclosure

Radiative transfer between two parallel plates is ex-

amined using three different test cases presented by

Taine and Soufiani [10]. All configurations are homo-

geneous with parabolic temperature profiles at atmo-

spheric pressure. Case 1 contains 10% (molar) water

vapour and the temperature varies from 2500 K at the

wall to 500 K at the centre. Case 2 contains 10% carbon

dioxide and the temperature varies from 500 K at the

wall to 2500 K at the centre. Both cases have black walls

and the path length is varied from 0.1 to 10 m. In case 3,

the same temperature and H2O profiles as in the case 1

are prescribed, but the wall emissivity is varied from 0.05

to 1.0 while the path length is kept constant at 0.2 m.

The S8 discrete ordinates quadrature [23] and 20 equally

spaced layers are used for angular and spatial discreti-

zations, respectively. The correlated and non-correlated

formulations are based on Eqs. (4) and (5), respectively.

One hundred equally spaced wave number intervals are

defined for the integration method. In Fig. 5, the

Fig. 5. Computed net wall heat fluxes for one-dimensional test cases. (a) Case 1 – H2O, black walls. (b) Case 2 – CO2, black walls. (c)

Case 3 – H2O, grey walls.
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computed net wall heat fluxes for these test cases are

compared with LBL results of Taine and Soufiani [10]

that serve as a reference.

In case 1, the non-correlated methods strongly

overpredict the flux by 10–60%, which highlights the

shortcomings of the non-correlated formulation. The

INT-c is quite accurate for short path lengths, but un-

derpredicts the fluxes by up to 30% for longer path

lengths. The 4RM-c overpredicts the fluxes by up to 40%

for short path lengths, which might be caused by the

upper limit for transmittance, and gets close to the re-

sults of the INT-c for long path lengths. The CKM

generally yields quite accurate results, but underpredicts

the fluxes by up to 14% at very long path lengths. The

deviations at long path lengths may be caused by the use

of a different spectroscopic data base corresponding to

the observations in Fig. 3.

In case 2, the INT-c, 4RM-c and 4RM-n underpre-

dict the flux onto the wall by around 15% for short path

lengths, while the integration methods overpredict the

flux onto the wall by up to 47% for long path lengths.

Strong deviations of the INT-c, due to the fact that the

EWBM parameters were optimized for the four-region

expression and cannot be adjusted by a constant factor,

have already been observed in similar test cases [21]. The

block calculation for overlapping bands in the 4RM-c

might be the reason for errors of about 21% at long path

lengths. The good behaviour of the 4RM-n for long path

lengths is surprising. The use of the absorption coeffi-

cient as the basic property leads to very good results for

the CKM, the error never exceeds 6%.

In case 3, all methods can reproduce the qualitative

behaviour of the LBL for varying wall emissivities. The

4RM-c predicts a too strong influence of the wall emis-

sivity on the incident heat flux, and the error of the INT-c

increases up to 17% for small wall emissivities. But the

large reduction of computational effort, compared to

higher order closures, without a serious loss of accuracy

justifies the zeroth closure approximation of the corre-

lated methods for grey walls. When the recurrence rela-

tion is used, the boundary condition for grey walls do not

require any approximation, leading to fair results for

small wall emissivities for the non-correlatedmethods and

to very good agreement with LBL results for the CKM.

5.2. Two-dimensional enclosure

Very few radiative transfer calculations in multi-di-

mensional enclosures with non-grey media have ap-

peared in the literature. Recently, Goutiere et al. [24]

presented a comparison of several non-grey gas radia-

tion models for five two-dimensional problems. Three of

them are taken here as a basis for comparison of the

different wide band model implementations. The geom-

etry used for all test cases is rectangular (1� 0:5 m2),

and its walls are black and kept at 0 K. In case 1, the

medium is isothermal at 1000 K and homogeneous with

20% (molar) H2O, while in case 2, the medium is non-

isothermal with a non-homogeneous CO2 profile. In case

3, the medium is non-isothermal and homogeneous with

10% CO2 and 20% H2O resembling a gas flame in a

furnace. A detailed description of the temperature and

concentration profiles can be found in [24]. A uniform

grid with 61� 31 cells is used for cases 1 and 2, while for

case 3, a uniform grid with 81� 41 cells is employed.

The T7 quadrature [25] is applied to minimize ray effects.

The spatial and angular discretization is identical to that

used in [24] allowing a comparison between the present

results and those reported there. The correlated and

non-correlated formulations are solved using the RTM

and DOM, respectively. The wave number intervals for

the integration method are defined by the band limits of

the four-region expression. The computed wall heat

fluxes onto the top wall and the radiative source terms

along the horizontal centreline are compared with the

narrow band results (NBM) of Goutiere et al. [24] that

have been calculated using the RTM and are taken here

as a reference solution. Based on this reference solution,

the relative errors of the applied methods are listed in

Table 1. In the following, a quantitative analysis of the

discrepancies is performed and then discussed.

In case 1 (see Fig. 6), the wall heat fluxes of the 4RM-

c and CKM are in excellent agreement with the NBM,

while the source terms show small deviations of around

Table 1

Mean and maximum (in brackets) relative errors (%) of the computed wall heat flux ðQÞ and radiative source term ðSÞ from NBM

results [24]; computational time for case 3 normalized by the computational time of the fastest method ðT Þ

Case 4RM-n 4RM-c INT-n INT-c CKM

Q 1 8.4 (10.7) 0.9 (3.9) 15.9 (18.0) 16.2 (17.1) 0.6 (2.9)

2 3.8 (6.9) 1.2 (2.7) 3.7 (8.0) 5.7 (7.0) 2.0 (2.8)

3 18.1 (19.8) 5.7 (6.9) 4.5 (5.9) 12.6 (12.9) 1.8 (4.9)

S 1 14.8 (39.7) 5.4 (13.7) 12.4 (46.4) 22.3 (24.3) 7.1 (10.7)

2 12.9 (43.4) 2.2 (9.1) 7.2 (48.7) 5.5 (14.2) 4.0 (10.5)

3 23.3 (167.4) 7.9 (40.8) 20.7 (192.5) 10.6 (12.5) 4.3 (22.1)

T 3 1 226.5 2.43 10712. 1.35
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6%. The INT-c strongly underpredicts both wall heat

fluxes and source term by 16% and 22%, respectively.

The non-correlated methods do not satisfactorily re-

produce the wall heat flux and radiative source term

distribution. In case 2 (see Fig. 7), the results of the

4RM-c and CKM are generally very good (the curves of

the wall heat fluxes are mostly hidden by the symbols),

while the INT-c underpredicts both wall heat fluxes and

source terms by around 6%. The non-correlated for-

mulations yield relatively accurate wall heat fluxes,

whereas the source terms strongly deviate from the ref-

erence values close to the wall. In case 3 (see Fig. 8), the

results of the CKM again are very good with a slight

overprediction of the source terms by about 4%. The

4RM-c yields source terms of similar accuracy but

overpredicts the wall heat fluxes by 6%, whereas the

INT-c strongly underpredicts the wall heat fluxes and

source terms by 13% and 11%, respectively. The non-

correlated methods generally overpredict the wall heat

fluxes and show qualitative disagreements of the source

term distribution with large errors close to the wall.

From the results presented in Figs. 6–8 and in

Table 1, it is concluded that the most accurate results

of the described approaches of the EWBM are ob-

tained using the CKM and the 4RM-c. The 4RM-c is

the exact formulation of the EWBM in the limit of a

homogeneous medium with no band overlapping. The

observed discrepancies do not generally exceed 10%,

which is well within the margin than can be attributed

to differences between wide and narrow band predic-

tions. As in the previous test cases, the relatively large

errors of the integration method in some of the test

cases are most probably due to the ad hoc increase of

x by 20% relative to the value of x optimized the

Fig. 6. Incident wall heat flux along the top wall (a) and radiative source term along the centreline (b) for a two-dimensional enclosure

with an isothermal, homogeneous medium (20% H2O).

Fig. 7. Incident wall heat flux along the top wall (a) and radiative source term along the centreline (b) for a two-dimensional enclosure

with a non-isothermal, non-homogeneous medium (CO2).
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four-region expression. The non-correlated formula-

tions (4RM-n and INT-n) generally yield the least

accurate predictions, with qualitative inaccurate pro-

files of the source term distribution in the vicinity of

the walls observed in most test cases. This is expected

because they neglect the correlation between the radi-

ation intensity and the absorption coefficient, which is

not physically realistic.

Finally, the efficiency of the various methods is ex-

amined by comparing the computational time needed

for one complete run of case 3. In Table 1, values are

shown normalized by the computational time of the

4RM-n, which is the fastest method. The computational

time for the methods using the DOM are all of the same

order of magnitude. The INT-n is about 2.5 times slower

than the 4RM-n due to the large effort required to

perform the integration over all bands in order to cal-

culate the radiative properties. The computational time

for the RTM is two or more orders of magnitude higher

than for the DOM. The 4RM-c and the INT-c are about

200 and 4400 times slower than the corresponding non-

correlated methods, respectively.

6. Conclusions

Various approaches to the EWBM have been applied

to model radiative heat transfer in several one- or two-

dimensional enclosures with non-grey media. The for-

mulation of the RTE strongly influences the results and

the computational effort. On the one hand the non-

correlated formulation can easily be applied to multi-

dimensional enclosures, e.g., using the discrete ordinates

method, but often leads to large errors and cannot re-

produce the shape of the source term distribution. On

the other hand the correlated formulation is more ac-

curate, but due to its high computational requirements it

is not appropriate for multi-dimensional engineering

calculations.

The different implementations of the EWBM also

have a strong influence on the accuracy and computa-

tional effort. A numerical integration of the spectral

transmittance, which is computationally more expensive

than the use of the four-region expression, often leads to

large errors and is therefore not recommended. The

exact application of the four-region expression or the

integration method implies the use of a correlated for-

mulation for the solution of the RTE. Therefore, both

methods are difficult to apply to multi-dimensional

problems, requiring very long computational times. The

application of a reordered wave number distribution

function allows the use of any radiation solver for both

one- and multi-dimensional problems, since the ab-

sorption coefficient is the basic radiative property.

Combined with the EWBM the wide band CKM has

shown to yield very good results without large compu-

tational effort. Therefore, it constitutes the best choice

for engineering calculations of radiative transfer in

multi-dimensional non-grey media.
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